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Target-oriented Multimodal Sentiment Classification

® Target-oriented multimodal sentiment classification(TMSC):
determine the sentiment polarity of the opinion target
mentioned in a (sentence, image) pair.

.(a) [Vin.cé -Gilligan]éosm-ve travels : (b) #.OOTD with my little dog by
| in the city of cape town . 1 my side . [Sammy] positive -

Figure 1: Two examples of TMSC task. Opinion targets and their
corresponding sentiment polarities are highlighted in the sentence.
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Motivation

® These methods easily fail to align two modalities because of
the granularity gap of opinion target across text and image.
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ga) [Viqce Gilligan] positive travels
in the city of cape town .

(b) # OOTD with my little dog by
my side . [SammY]positive .
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Figure 2: The first issue of TMSC task. The red bounding box denotes
the visual clues that the opinion target focuses on.
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Motivation

® Even though it is captured, diversified visual representations
expressing the same mood also bring challenges for sentiment
prediction.
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(c) [Vipce Gilligan] positive travels : (d) #.OOTD with my little dog by
| in the city of cape town . 1 my side . [Sammy]y, ;gifiye -

Figure 3: The second issue of TMSC task. The red bounding box denotes
the visual clues that the opinion target focuses on.

Fei Zhao Natural Language Processing Laboratory Nanjing University

A Knowledge-enhanced Framework for Target-Oriented Multimodal Sentiment Classification 34



Motivation & Intuition
[e]e]e] o]

Intuition

® For the first issue, we observed that the nouns of ANPs are
also coarse-grained concepts, so an intuitive idea is to map a
fine-grained opinion target (e.g. "Vince Gilligan") to a
coarse-grained noun (e.g. "man") in ANPs.

adjectives nouns
clean
happy
fresh
cute
= broken
(a) [Vince Gilligan],, .y, travels in the (b) # OOTD with my little dog by my
) k51de . [Sammy]posmve .

adjectives nouns

J

kcity of cape town .

Figure 4: Extract Top-5 adjective-noun pairs (ANPs) from each image in
our Twitter datasets.
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Intuition

® For the second issue, we observed that ANPs can usually
extract the same adjectives from different visual content
expressing the same mood, so an intuitive idea is to map
diversified visual representations (e.g., smiling faces) to the
same adjective (e.g., “happy”).

adjectives nouns
clean

ANPs | - happy
fresh

cute
=3 g broken

(a) [Vince Gilligan],, gy, travels in the (b) # OOTD with my little dog by my
| city of cape town . | side . [Sammy] iy -

adjectives nouns

J

Figure 5: Extract Top-5 adjective-noun pairs (ANPs) from each image in
our Twitter datasets.
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Knowledge-enhanced Framework

General architecture

i1 Add & Norm

The proposed model
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Figure 6: The overview of our KEF framework.
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General Attention Architecture

® We employ a cross-attention block to capture target-aware
visual representation Hy_,\/ and target-aware text
representation Hr_,¢:

HT%V = CrOSS—ATT(HT, Hv), (1)
Hr_ ¢ = Cross-ATT(Ht, He), (2)

® We feed the first token H° of the multimodal representation
to a softmax layer for the sentiment classification:

p(y|H®) = softmax(Wpy H°), (3)

® To optimize all the parameters, the objective is to minimize
the standard cross-entropy loss function:

D)
Le= 2 Z logp(y'|H°). (4)
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Visual Attention Enhancer

Challenge: most of the nouns extracted from the image are
target-independent, so we cannot use them directly.

Mapping Method

® We first measure the strength of target-noun relevance by
calculating the semantic similarity between noun
representation and target representations:

o' = cos(Ht, Hiy), (5)

where cos(+) is a cosine function and o' means the similarity
score.
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Visual Attention Enhancer

® Based on the largest similarity score, we can find the most
relevant noun to the opinion target:

a™ = max(a'), (6)

where HYJ denotes the noun representation corresponding to
the highest similarity score o'.

® Next, we aggregate them together as complementary
information for the opinion target to capture the
corresponding visual representations Hr_,\/. Formally, we
update Ht in Eq. 1 by:
Hy = a™H, (7)
Hr = Hr + AwHp, (8)
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Visual Attention Enhancer

Reconstruction Loss

® To ensure that visual attention can capture the visual features
associated with the opinion target more accurately, we also
devise a reconstruction loss to minimize the divergence
between target-relevant noun representations and target-aware
visual representations. Formally,

1 ~
L= 3] > (Hn = Hrov)?, (9)
i=1

® |n the Visual Attention Enhancer, the final loss is
L =L:+ AL, where A measures the importance of
reconstruction loss £, and can be adjusted.
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Sentiment Prediction Enhancer

Challenge: the adjective most relevant to visual
representations is unknown, we need to find it explicitly.

Transformation Method

® Since an adjective is a modifier of a noun, the adjective
corresponding to this noun is also most relevant to
target-aware visual representations.

® We use it as the complementary information of visual
representations to reduce the difficulty of sentiment prediction:

Hrv = Hrv + AaHJ. (10)

where H}' denotes the adjective representation corresponding
to the noun representation Hy.
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Datasets

® We carry out experiments on two public multimodal datasets
TWITTER-15 and TWITTER-17. General information for both
datasets is presented in Table 1.

TWITTER-15 TWITTER-17
Pos Neg Neu Total AT Words AL Pos Neu Neg Total AT Words AL

Train | 928 368 1883 3179 1.348 9023 16.72 | 1508 416 1638 3562 1.410 6027 16.21
Dev | 303 149 670 1122 1.336 4238 16.74 | 515 144 517 1176 1.439 2922 16.37
Test | 317 113 607 1037 1.354 3919 17.05 | 493 168 573 1234 1450 3013 16.38

Table 1: The basic statistics of our two multimodal Twitter datasets.
Pos: Positive, Neg: Negative, Neu: Neutral.
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Compared Methods

We choose three kinds of baselines.

® The first is a frequently-used visual-based model
ResNet- Target.

® The second is some classical text-based models, including
AE-LSTM [WHZ*16], MemNet [TQL16], RAM [CSBY17],
MGAN [FFZ18], BERT [DCLT19].

® The third is the recent multi-modal models, including
Res-MGAN, MIMN [XMC19], ESAFN [YJX19],
MMAP [ZZH*21], mPBERT [YJ19],
ModalNet-BERT [ZWL*21], EF-CapTrBERT [KF21],
TomBERT [YJ19] and Saliencybert [WLS™21].
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Main Results
Model TWITTER-15 TWITTER-17
ode Acc Macro-F1 Acc Macro-F1
Visual
Res-Target | 59.88 4648 | 5859 53.98
Text
AE-LSTM 70.30 63.43 61.67 57.97
MemNet 70.11 61.76 64.18 60.90
RAM 70.68 63.05 64.42 61.01
MGAN 71.17 64.21 64.75 61.46
BERT 74.15 68.86 68.15 65.23
Text + Visual
Res-MGAN 71.65 63.88 66.37 63.04
MIMN 71.84 65.69 65.88 62.99
ESAFN 73.38 67.37 67.83 64.22
MMAP* 73.50 66.53 67.31 64.34
mPBERT 75.79 71.07 69.61 67.12
ModalNet-Bert® 76.71 70.93 69.55 67.28
EF-CapTrBERT* 77.01 71.79 69.00 66.71
Our Framework
SaliencyBERT 77.03 72.36 69.69 67.19
KEF-SaliencyBERT | 78.1570.33 73.547+0.55 | 71.887£0.21 68.967+0.14
A +1.12 +1.18 +2.19 +1.77
TomBERT 77.15 71.75 70.50 68.04
KEF-TomBERT 78.681:0.30 73.751:0.27 | 72.12720.15 69.961+0.25
A +1.53 +2.00 +1.62 +1.92

Table 2: Test accuracy on the TWITTER-15 and TWITTER-17 datasets
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Ablation Study

Effects of Knowledge-enhanced Framework

TWITTER-15 TWITTER-17
Model
Acc Macro-F1 Acc Macro-F1
TomBERT 77.15 71.75 70.50 68.04

TomBERT+VAE  78.06+0.30 72.824+0.45 71.79+0.07 69.5540.16
TomBERT+SPE  77.86+0.21 72.42+0.32 71.554:0.29  69.16+0.37
KEF-TomBERT 78.68+0.30 73.75+£0.27 72.12+0.15 69.96+0.25

A (SPE) +0.62 +0.93 +0.33 +0.41

Table 3: Ablation study of two main components. A represents the
difference between the performance of KEF-TomBERT and
TomBERT+VAE.

Fei Zhao Natural Language Processing Laboratory Nanj

A Knowledge-enhanced Framework for Target-Oriented Multimodal Sentiment Classification



Experiment
[e]e]e]e]e] lele]

Ablation Study
Analysis over components of Visual Attention Enhancer

@ Positive X 053;5; @ Positive
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(b) KEF-TomBERT

(a) TomBERT+VAE
Figure 7: Visualization of multimodal output representations for
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Parameter Analysis

Effect of the number of ANPs
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Figure 8: The results of KEF-TomBERT under different numbers of
ANPs. Dev is short for development set.
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Case Study

To better understand the advantage of Visual Attention Enhancer
(VAE) and Sentiment Prediction Enhancer (SPE), we randomly
select some samples from the Twitter dataset for a case study.

clean
happy

i I:> fresh
| cute
broken

(a) RT @ MaggieCoughlan : [Karl\ie],wgn,iw (b) [Vince Gilligan]
is on the phone .

lpositive travels in the (c) # OOTD with my little dog by my side
city of cape town . [Sammy]p,pigive -
TomBERT : neutral X TomBERT : neutral X TomBERT : negative X
TomBERT +VAE : negative v TomBERT+VAE : positive v TomBERT+VAE : negative X
KEF-TomBERT : positive v/ KEF-TomBERT : positive v/

Figure 9: Predictions of TomBERT, TomBERT+VAE and
KEF-TomBERT on three samples. The yellow/red bounding box are the
visual clues that the opinion target focuses on under different methods.
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® |n this paper, we propose a novel knowledge-enhanced
Framework (KEF) for the TMSC task.

® We design two novel knowledge enhancers, Visual Attention
Enhancer and Sentiment Prediction Enhancer, to improve the
visual attention capability and sentiment prediction capability
of the TMSC task.

® Results from numerous experiments indicate that our model
achieves better performance than other state-of-the-art

methods. Our code and datasets are available at
https://github.com/1429904852/KEF.
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