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Target-oriented Opinion Words Extraction

I Target-oriented Opinion Words Extraction (TOWE): extract the
corresponding opinion words for a given target from a sentence.

                        


Waiters are very friendly and the pasta is out of this world .

Given opinion target: waiters Corresponding opinion words: friendly
Given opinion target: pasta Corresponding opinion words: out of this world

Figure 1: An example of TOWE. The words highlighted in red are two given opinion
targets. TOWE task aims to extract the spans in blue as opinion words for the given
targets.
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Formulation

I Given a sentence {w1,w2, · · · ,wn} consisting n words.
I Give a target wt(we notate an opinion target as one word for simplicity).
I The goal is to tag each word wi in s with a label yi ∈ {B, I,O} (B:

Beginning, I: Inside, O: Others).

1. Waiters/O are/O very/O friendly/B and/O the/O
pasta/O is/O out/O of/O this/O world/O ./O

2. Waiters/O are/O very/O friendly/O and/O the/O
pasta/O is/O out/B of/I this/I world/I ./O

Figure 2: Different labeling results of a sentence when given different opinion
targets. The opinion targets are highlighted in red and the opinion words/phrases are
in blue.
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Motivation

I The difficulty of annotation causes the datasets of TOWE to be
insufficient, which heavily limits the performance of neural models.

I Enormous review sentiment classification data such as Amazon and Yelp
are easily accessible online. These reviews contain substantial opinions
information and semantic patterns.

I we propose to transfer latent opinion knowledge from large-scale
sentiment classification datasets to the low-resource task TOWE.
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Challenges

I The opinions information such as opinion words in sentiment
classification datasets are latent and unannotated, we need to find them
explicitly before transferring them(Attention Mechanism).

I Since sentiment classification for reviews does not consider the target
information, the latent opinion information obtained is global and
independent of the target. Thus, this information cannot be used directly
by TOWE(Transformation Method).
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Latent Opinions Transfer Network

Decoding for TOWE

BiLSTM
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Pretrained Sentiment Classification Module
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Auxiliary Learning for Latent Opinion Words
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Figure 3: The architecture of Latent Opinions Transfer Network. Different opinion
targets in a sentence have different position embeddings.
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Base Model: Position Embedding based BiLSTM

The representation ei of each word wi is formed by concatenating the word
vector and the corresponding position vector:

ei = [Eemb(wi);Epos(li)] , (1)

We employ a BiLSTM network to capture the contextual information of each
word. The simplified update rule can be written as follows:

ht
i = BiLSTM(ht

i−1, ei, θt), (2)

In the base model, the context representation ht can be used for predicting the
opinion words of the given target.
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Pretrained Sentiment Classification Model

I We employ a BiLSTM network to capture the contextual information for
each word, and outputs a sequence of hidden vectors{hsc

1 ,h
sc
2 , · · · ,hsc

m}.
I The attention mechanism is employed to capture the latent and global

opinion words that are significant to sentiment classification.

u(hsc
i ,h

sc
avg) = hsc

i ·Wu · hsc
avg + bu, (3)

αi =
exp(u(hsc

i ,hsc
avg))∑m

j=1 exp(u(h
sc
j ,hsc

avg))
, (4)
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Transferring Pretrained Encoder

I From the semantic level view, the encoder of the pretrained sentiment
classification module holds substantial implicit opinion information

I We integrate it into the TOWE module by concatenating two hidden
states:

ri =
[
ht

i;hsc
i
]
, (5)
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Transferring Latent Opinion Words

Transformation Method
I we introduce the opinion target information into the attention distribution

by a target-relevant distance weight ci:

αi
′ = ci · αi, (6)

ci = 1− |i− t|
n

, (7)

I To regain the probabilistic attention distribution, the target-dependent
attention weight αi

′ is re-normalized:

βi =
αi
′∑n

j=1 αj
′ . (8)

I we use a heuristic strategy to convert the normalized attention weight βi

into the binary latent opinion words by the threshold 1
n :

ya
i =

{
1 if βi ≥ 1

n ,

0 otherwise ,
(9)
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Transferring Latent Opinion Words

Auxiliary Learning Signal
I We integrate these latent opinions into TOWE module by auxiliary

learning signal:

ŷa
i = softmax(Wari + ba), (10)

La = −
n∑

i=1

1∑
k=0

I(ya
i = k) log(ŷa

i,k), (11)
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Decoding and Training

We use a linear layer and a softmax layer to compute prediction probaility ŷi:

ŷi = softmax(Wtri + bt), (12)

The cross-entropy loss of TOWE task can be defined as follows:

Lt = −
n∑

i=1

2∑
k=0

I(yi = k) log(ŷi,k), (13)

LOTN also integrates latent opinions through auxiliary learning signal La.
Thus the final loss is defined as follows:

J = Lt + λLa, (14)
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Datasets

I We evaluate our model on four benchmark datasets(Fan et al., 2019).
The statistics of the datasets are summarized in Table 2.

Datasets #sentences #targets

14res Train 1,627 2,643
Test 500 864

14lap Train 1,158 1,634
Test 343 482

15res Train 754 1,076
Test 325 436

16res Train 1,079 1,512
Test 329 457

Figure 4: Statistics of TOWE datasets. A sentence may contain multiple opinion
targets.
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Datasets

I To pretrain the sentiment classification model, we use the two datasets
respectively from Amazon Review and Yelp Review. Table 3 shows the
statistics of Amazon Review and Yelp Review.

Datasets #positive #negative #total
Yelp Review 266,041 177,218 443,259

Amazon Review 277,228 277,769 554,997

Figure 5: Statistics of the two datasets Amazon Review and Yelp Review.
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Overall Performance Comparison

Models
14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1
Distance-rule 58.39 43.59 49.92 50.13 33.86 40.42 54.12 39.96 45.97 61.90 44.57 51.83

Dependency-rule 64.57 52.72 58.04 45.09 31.57 37.14 65.49 48.88 55.98 76.03 56.19 64.62
LSTM 52.64 65.47 58.34 55.71 57.53 56.52 57.27 60.69 58.93 62.46 68.72 65.33

BiLSTM 58.34 61.73 59.95 64.52 61.45 62.71 60.46 63.65 62.00 68.68 70.51 69.57
Pipeline 77.72 62.33 69.18 72.58 56.97 63.83 74.75 60.65 66.97 81.46 67.81 74.01

TC-BiLSTM 67.65 67.67 67.61 62.45 60.14 61.21 66.06 60.16 62.94 73.46 72.88 73.10
IOG 82.38 78.25 80.23 73.43 68.74 70.99 72.19 71.76 71.91 84.36 79.08 81.60

PE-BiLSTM 80.10 76.51 78.26 72.01 64.20 67.83 70.36 65.73 67.96 82.27 74.95 78.43
LOTN 84.00† 80.52† 82.21† 77.08† 67.62 72.02† 76.61† 70.29 73.29† 86.57† 80.89† 83.62†

Figure 6: Main experiment results(%). Best results are in bold (P, R, and F1-score,
the larger is the better). The marker † represents that LOTN outperforms other
methods significantly (p < 0.01) .

Summary
I Compared to its base version PE-BiLSTM, LOTN obtains about 4%∼5% improvements

in F1-score.

I LOTN outperforms the previous state-of-the-art method IOG by 1.98% and 2.02%
F1-score respectively in the datasets 14res and 16res.

zhaof NJUNLP May 14, 2020 20 / 27



Effects of Tranferring Encoder and Opinion Words

Models
14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1
PE-BiLSTM 80.10 76.51 78.26 72.01 64.20 67.83 70.36 65.73 67.96 82.27 74.95 78.43

+transferred encoder 84.57 79.54 81.97 77.50 67.47 72.13 75.90 69.00 72.26 86.05 79.81 82.79
+auxiliary learning 84.10 77.20 80.49 75.63 66.42 70.71 76.31 68.67 72.29 86.77 79.46 82.93

LOTN 84.00 80.52 82.21 77.08 67.62 72.02 76.61 70.29 73.29 86.57 80.89 83.62

Figure 7: Experiment results of adding the transferred encoder or auxiliary learning
on PE-BiLSTM(%).

Summary
I Compared to the base model PE-BiLSTM, we can find that PE-BiLSTM+transferred

encoder and PE-BiLSTM+auxiliary learning both achieve significant and consistent
improvements on all datasets.

I The results indicate that the proposed two methods are useful for the final model LOTN
and they transfer opinions knowledge from different perspectives.
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Effect of the Hyper-parameter λ

表格 1
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Figure 8: The effect of different hyper-parameter λ.

Summary
I LOTN achieves the relatively stable performance with varying λ on the datasets 14res,

15res and 16res, which indicates the robustness of our method.

I The performance of LOTN has a downward trend with an increase of λ since the bigger
λ has a negative effect on the decoding of the model.
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Case Study

Sentence Distance-rule BiLSTM IOG PE-BiLSTM
LOTN

Latent Opinion Words Target Decoding
The bread is top notch as well. top% top notch! top notch! top notch! top notch top notch!

Great food but the service was dreadful! Great! dreadful% Great! Great! Great Great!
Great food but the service was dreadful! dreadful! dreadful! dreadful! dreadful! dreadful dreadful!

Good for a quick sushi lunch. quick% Good, quick! quick% quick% Good Good, quick!
Their twist on pizza is healthy, but full of flavor. full! healthy% healthy, full% NULL% full full!

Figure 9: Examples of the extracted results in different methods. The opinion targets
are in red and the corresponding golden opinion words are in blue. The “NULL”
represents the prediction is empty.

Summary
I Review sentiment classification model can reduce the errors of TOWE model to a certain

extent
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Error Analysis

Models NULL Under-extracted Over-extracted Others Total
PE-BiLSTM 76 107 49 34 266

LOTN 65 85 62 31 243

Figure 10: Statistics of different error types for PE-BiLSTM and LOTN in the
dataset 14res.

Summary
I PE-BiLSTM and LOTN do not extract any opinion words in more than a quarter of error

cases.

I Compared to PE-BiLSTM, LOTN makes fewer mistakes in the NULL and
under-extracted type. In contrast, PE-BiLSTM makes fewer over-extracted predictions.
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Conclusions

I Insufficiency of labeled data heavily restricts the effectiveness of the
neural models for TOWE.

I We propose a novel model to transfer latent opinions knowledge from
resource-rich review sentiment classification datasets to improve the
low-resource task TOWE.

I Results from numerous experiments indicate that our approach achieves
better performance than other state-of-the-art methods. Extensive
analysis also demonstrates the effectiveness of our model.
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End.

Thanks!
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